F.M. 20 Session 2014 - 2015 Time: 20 mins

Q. 1

(a) $\mu_A(\mathbf{x})$ and $\mu_B(\mathbf{x})$ are the membership functions of the fuzzy sets A and B, respectively.

 $\mu_A(x) = e^{\frac{1}{1+x}}$ $\mu_B(x) = \frac{1}{1 + (\frac{x-50}{10})^4}$

Decide whether A and B are closed or open.

Answer: A membership function $\mu(x)$ is said to be closed iff $\lim_{x\to\infty} \mu(x) = 0 = \lim_{x\to\alpha} \mu(x)$

Case 1 : $\mu_A(x) = e^{\frac{1}{1+n}}$: Here $\lim_{x \to -\infty} \mu_A(x) = \lim_{x \to +\infty} \mu_A(x) = 1$ Hence, it is neither closed nor open.

Case 2: $\mu_B(x) = \frac{1}{1 + (\frac{x-50}{10})^4}$: Here $\lim_{x \to -\infty} \mu_B(x) = \lim_{x \to +\infty} \mu_A(x) = 0$ Hence, it is closed.

[2+2]

(b) Given two fuzzy sets A and B defined over universe of discourses X and Y, respectively. $A = \{(20, 0.2), (25, 0.4), (30, 0.6), (35, 0.6), (40, 0.7), (45, 0.8), (50, 0.8)\}$ $B = \{(1, 0.8), (2, 0.8), (3, 0.6), (4, 0.4)\}$ $X = \{10, 15, 20, 25, 30, 35, 40, 45, 50, 55\}$ $Y = \{0, 1, 2, 3, 4, 5\}$

Draw the graphs for the following.

i.
$$A \times B$$

ii. $A \Longrightarrow B$

(i) $A \times B$

$$\mu_{A\times B}(x,y) = min\{\mu_A(x),\mu_B(y)\} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 20 & 25 \\ 30 & 25 \\ 40 & 0.4 & 0.4 & 0.4 \\ 0.6 & 0.6 & 0.6 & 0.4 \\ 0.6 & 0.6 & 0.6 & 0.4 \\ 0.7 & 0.7 & 0.6 & 0.4 \\ 0.8 & 0.8 & 0.6 & 0.4 \\ 0.8 & 0.8 & 0.6 & 0.4 \end{bmatrix}$$

(ii) $A \Rightarrow B$

For this many interpretation are possible. $A \Rightarrow B \equiv \overline{A} \cup B$ or $A \times B$ or $(A \times B) \cup (\overline{A} \times Y)$ Accordingly answer will be different.

[4+4]

Q. 2

(a) Suppose, a fuzzy relation is 'If x is A then y is B'. How to find the following:

Since C and D are not mentioned as A' or B' and (vice-versa) none of the GMP and GMT are applicable in this case and hence we can not deduce anything.

[3+3]

(b) Two fuzzy sets P and Q are defined on $x \in X$ as follows.

	x_1	x_2	x_3	x_4	x_5
Р	0.1	0.2	0.7	0.5	0.4
Q	0.9	0.6	0.3	0.2	0.8

Find (i.) $(P \cap \overline{Q})_{0.4}$ (ii.) $(P \times Q)_{0.4}$ **Answer :** (i) $P \cap \overline{Q} = (x_1, 0.1), (x_2, 0.2), (x_3, 0.7), (x_4, 0.5), (x_5, 0.2)$

$$\begin{array}{l} \therefore (P \cap \overline{Q})_{0.4} = \{x | \mu(x) \ge 0.4\} = \{x_3, x_4\} \\ \text{(ii)} \\ P \times Q = \begin{array}{c} x_1 & x_2 & x_3 & x_4 & x_5 \\ x_2 & 0.1 & 0.1 & 0.1 & 0.1 & 0.1 \\ 0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\ 0.7 & 0.6 & 0.3 & 0.2 & 0.7 \\ 0.5 & 0.5 & 0.3 & 0.2 & 0.4 \\ 0.4 & 0.4 & 0.3 & 0.2 & 0.4 \end{array} \right\}, (P \times Q)_{0.4} = \begin{array}{c} x_1 & x_2 & x_3 & x_4 & x_5 \\ x_1 & x_2 & x_3 & x_4 & x_5 \\ x_2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 \end{array} \right]$$

[3+3]

- Q. 3
- (a) The membership functions of two fuzzy sets A and B are shown in the following graph. A: climate is Hot.
 - B: climate is Cold.

i. Draw the graph of the membership function, which represents the fuzzy set C: climate is Extreme.

Answer : Climate is Extreme \approx Climate is Hot OR Climate is Cold.

ii. What would be the graph of the membership function μ_D of the fuzzy set $D = \overline{(A \cap C)}$? State D in terms of fuzzy linguistic. Answer :

[3+3]

(b) Two fuzzy relations 'likes' and 'earns' are defined below.

		Football	Hockey	Cricket	
	Dhoni	0.1	0.3	0.8	-
lilea -	Virat	0.2	0.7	0.5	
iikes =	Rohit	0.5	0.4	0.2	
	Sekhar	0.4	0.5	0.6	

For example, x likes Game.

$$\text{earns} = \begin{array}{c} Dhoni \\ Virat \\ Rohit \\ Sekhar \end{array} \begin{bmatrix} 0.6 & 0.3 & 0.2 \\ 0.4 & 0.7 & 0.8 \\ 0.1 & 0.3 & 0.2 \\ 0.5 & 0.2 & 0.6 \end{bmatrix}$$

For example, x earns Money.

Obtain the relation between a game to a money? [6] Answer :

This relation can be obtained as $likes^T \circ earns$. That is,

Footboll Hockey Cricket	$\begin{bmatrix} 0.1\\ 0.3\\ 0.8 \end{bmatrix}$	Virat 0.2 0.7 0.5	Rohit 0.5 0.4 0.2	Sekhan 0.4 0.5 0.6] 。	Dhoni Virat Rohit Sekhan	$ \begin{bmatrix} 10L \\ 0.6 \\ 0.4 \\ 0.1 \\ 0.5 \end{bmatrix} $	50L 0.3 0.7 0.3 0.2	$ \begin{array}{c} 100L \\ 0.2 \\ 0.8 \\ 0.2 \\ 0.6 \\ \end{array} $	=
			Football Hockey	$ \begin{bmatrix} 10L \\ 0.4 \\ 0.5 \end{bmatrix} $	$50L \\ 0.3 \\ 0.7$	$\begin{array}{c} 100L \\ 0.4 \\ 0.7 \end{array}$				
			Circket	0.6	0.5	0.6				

Q. 4

(a) What are the components you should consider in order to mathematically model an artificial neuron ?

Answer : Two components namely summation until and threshold unit are required to mathematically model as artificial neuron. Two components can be defined as follows.

[4]

Summation unit $I = \sum_{i=1}^{n} x_i \cdot w_i$. Threshold unit $\bigcirc = \phi(I)$, where ϕ is some transfer function.

(b) If $\phi(I) = \frac{1}{1+e^{-\alpha I}}$ is a transfer function in a perceptron, then show that

Answer :

$$\begin{split} \phi(I) &= \frac{1}{1+e^{-\alpha I}}; \text{ Let } z = 1 + e^{-\alpha I} \dots \frac{\partial z}{\partial I} = -\alpha \cdot e^{-\alpha I} = -\alpha \cdot \frac{1-\phi(I)}{\phi(I)} \\ \frac{\partial \phi(I)}{\partial I} &= \frac{\partial \phi(I)}{\partial z} \cdot \frac{\partial z}{\partial I} \\ &= -\frac{1}{z^2} \cdot -\alpha \cdot \frac{1-\phi(I)}{\phi(I)} \\ &= \phi(I)^2 \cdot \alpha \cdot \frac{1-\phi(I)}{\phi(I)} , \dots \frac{1}{z} = \phi(I) \\ &= \alpha(1-\phi(I)) \cdot \phi(I) \end{split}$$

$$[3]$$

(c) Draw a schematic diagram of a multi-layer feed-forward artificial neural network architecture and clearly label the different elements in it.

Give one application, where you should apply such an ANN architecture.

Answer :

Application : Such an ANN would be applied to problems whose output are non-separable with resepct to input. [4+1]

Q. 5

(a) Show how the computations in input, hidden and output layers of an ANN can be accomplished in terms of matrix algebra.

[2+2+2]

Answer :

Whole learning method consists of the following three computations:

- (a) Input layer computation
- (b) Hidden layer computation
- (c) Output layer computation

In our computation, we assume that $\langle T_0, T_I \rangle$ be the training set of size |T|.

- Let us consider an input training data at any instant be $I^I = [I_1^1, I_2^1, \cdots, I_i^1, I_l^1]$ where $I^I \in T_I$
- Consider the outputs of the neurons lying on input layer are the same with the corresponding inputs to neurons in hidden layer. That is,

$$O^{I} = I^{I}$$

 $[l \times 1] = [l \times 1]$ [Output of the input layer]

• The input of the j-th neuron in the hidden layer can be calculated as follows.

 $I_{j}^{H} = v_{1j}o_{1}^{I} + v_{2j}o_{2}^{I} + \dots + v_{ij}o_{j}^{I} + \dots + v_{ij}o_{l}^{I}$

where $j = 1, 2, \cdots m$.

[Calculation of input of each node in the hidden layer]

• In the matrix representation form, we can write

$$\begin{split} I^{H} &= V^{T} \cdot O^{I} \\ [m \times 1] &= [m \times l] \ [l \times 1] \end{split}$$

- Let us consider any j-th neuron in the hidden layer.
- Since the output of the input layer's neurons are the input to the j-th neuron and the j-th neurons follows the log-sigmoid transfer function, we have

$$O_j^H = \frac{1}{1 + e^{-\alpha_H \cdot I_j^H}}$$

where $j = 1, 2, \dots, m$ and α_H is the constant co-efficient of the transfer function.

Note that all output of the nodes in the hidden layer can be expressed as a one-dimensional column matrix.

$$O^{H} = \begin{bmatrix} \cdots \\ \cdots \\ \vdots \\ \frac{1}{1+e^{-\alpha_{H} \cdot I_{j}^{H}}} \\ \vdots \\ \cdots \\ \cdots \end{bmatrix}_{m \times 1}$$

Let us calculate the input to any k-th node in the output layer. Since, output of all nodes in the hidden layer go to the k-th layer with weights $w_{1k}, w_{2k}, \dots, w_{mk}$, we have

$$I_k^O = w_{1k} \cdot o_1^H + w_{2k} \cdot o_2^H + \dots + w_{mk} \cdot o_m^H$$

where $k = 1, 2, \cdots, n$

In the matrix representation, we have

$$I^{O} = W^{T} \cdot O^{H}$$
$$[n \times 1] = [n \times m] [m \times 1]$$

Now, we estimate the output of the k-th neuron in the output layer. We consider the tan-sigmoid transfer function.

$$O_k = \frac{e^{\alpha_o \cdot I_k^o} - e^{-\alpha_o \cdot I_k^o}}{e^{\alpha_o \cdot I_k^o} + e^{-\alpha_o \cdot I_k^o}}$$

for $k = 1, 2, \cdots, n$

Hence, the output of output layer's neurons can be represented as

$$O = \begin{bmatrix} \cdots \\ \cdots \\ \vdots \\ e^{\alpha_o \cdot I_{k}^o - e^{-\alpha_o \cdot I_{k}^o}} \\ e^{\alpha_o \cdot I_{k}^o + e^{-\alpha_o \cdot I_{k}^o}} \\ \vdots \\ \cdots \\ \cdots \end{bmatrix}_{n \times 1}$$

(b) Explain the basic principle of calculating error in supervised learning.

Answer :

• Let us consider any k-th neuron at the output layer. For an input pattern $I_i \in T_I$ (input in training) the target output T_{Ok} of the k-th neuron be T_{Ok} .

[2]

• Then, the error e_k of the k-th neuron is defined corresponding to the input I_i as

$$e_k = \frac{1}{2} \left(T_{Ok} - O_{Ok} \right)^2$$

where O_{Ok} denotes the observed output of the k-th neuron.

• For a training session with $I_i \in T_I$, the error in prediction considering all output neurons can be given as

$$e = \sum_{k=1}^{n} e_k = \frac{1}{2} \sum_{k=1}^{n} (T_{Ok} - O_{Ok})$$

where n denotes the number of neurons at the output layer.

• The total error in prediction for all output neurons can be determined considering all training session $\langle T_I, T_O \rangle$ as

$$E = \sum_{\forall I_i \in T_I} e = \frac{1}{2} \sum_{\forall t \in } \sum_{k=1}^n (T_{Ok} - O_{Ok})^2$$

- (c) Derive the 'delta rule' according to the method of Steepest descent.
 - For simplicity, let us consider the connecting weights are the only design parameter.
 - Suppose, V and W are the wights parameters to hidden and output layers, respectively.
 - Thus, given a training set of size N, the error surface, E can be represented as

$$E = \sum_{i=1}^{N} e^{i} \left(V, W, I_{i} \right)$$

where I_i is the i-th input pattern in the training set and $e^i(...)$ denotes the error computation of the i-th input.

- Now, we will discuss the steepest descent method of computing error, given a changes in V and W matrices.
- Suppose, A and B are two points on the error surface (see figure in Slide 30). The vector \vec{AB} can be written as

$$\vec{AB} = (V_{i+1} - V_i) \cdot \bar{x} + (W_{i+1} - W_i) \cdot \bar{y} = \Delta V \cdot \bar{x} + \Delta W \cdot \bar{y}$$

The gradient of \vec{AB} can be obtained as

$$e_{\vec{AB}} = \frac{\partial E}{\partial V} \cdot \bar{x} + \frac{\partial E}{\partial W} \cdot \bar{y}$$

Hence, the unit vector in the direction of gradient is

$$\bar{e}_{\vec{AB}} = \frac{1}{|e_{\vec{AB}}|} \left[\frac{\partial E}{\partial V} \cdot \bar{x} + \frac{\partial E}{\partial W} \cdot \bar{y} \right]$$

• With this, we can alternatively represent the distance vector AB as

$$\vec{AB} = \eta \left[\frac{\partial E}{\partial V} \cdot \bar{x} + \frac{\partial E}{\partial W} \cdot \bar{y} \right]$$

where $\eta = \frac{k}{|e_{\vec{AB}}|}$ and k is a constant

• So, comparing both, we have

$$\Delta V = \eta \frac{\partial E}{\partial V}$$
$$\Delta W = \eta \frac{\partial E}{\partial W}$$

This is also called as **delta rule** and η is called **learning rate**.

[2+2]