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Q. 1

(a) µA(x) and µB(x) are the membership functions of the fuzzy sets A and B, respectively.

µA(x) = e
1

1+x

µB(x) = 1
1+(x−50

10
)4

Decide whether A and B are closed or open.

Answer : A membership function µ(x) is said to be closed iff limx→−∞ µ(x) =0= limx→αµ(x)

Case 1 : µA(x) = e
1

1+n : Here limx→−∞ µA(x) = limx→+∞µA(x) = 1
Hence, it is neither closed nor open.

Case 2 : µB(x) = 1
1+(x−50

10
)4

: Here limx→−∞ µB(x) = limx→+∞ µA(x) = 0

Hence, it is closed.

[2+2]

(b) Given two fuzzy sets A and B defined over universe of discourses X and Y , respectively.
A = {(20, 0.2), (25, 0.4), (30, 0.6), (35, 0.6), (40, 0.7), (45, 0.8),
(50, 0.8)}
B = {(1, 0.8), (2, 0.8), (3, 0.6), (4, 0.4)}
X = {10, 15, 20, 25, 30, 35, 40, 45, 50, 55}
Y = {0, 1, 2, 3, 4, 5}

Draw the graphs for the following.

i. A×B
ii. A =⇒ B

(i) A×B

µA×B(x, y) = min{µA(x), µB(y)} =



1 2 3 4

20 0.2 0.2 0.2 0.2
25 0.4 0.4 0.4 0.4
30 0.6 0.6 0.6 0.4
35 0.6 0.6 0.6 0.4
40 0.7 0.7 0.6 0.4
45 0.8 0.8 0.6 0.4
50 0.8 0.8 0.6 0.4


(ii) A⇒ B

For this many interpretation are possible.

A⇒ B ≡ Ā ∪B or A×B or (A×B) ∪ (Ā× Y )

Accordingly answer will be different.
[4+4]



Q. 2

(a) Suppose, a fuzzy relation is ‘If x is A then y is B’. How to find the following:

i. x is C, given that y is D
ii. y is D, given that x is C

Answer :
GPM

if x is A then y is B
x is A′

−−−−−−−−−−−−−−−−
y is B′

GMT is

if x is A then y is B
y is B′

−−−−−−−−−−−−−−−−
x is A′

Since C and D are not mentioned as A′ or B′ and (vice-versa) none of the GMP and GMT are
applicable in this case and hence we can not deduce anything.

[3+3]

(b) Two fuzzy sets P and Q are defined on x∈ X as follows.

x1 x2 x3 x4 x5
P 0.1 0.2 0.7 0.5 0.4

Q 0.9 0.6 0.3 0.2 0.8

Find (i.) (P ∩Q)0.4 (ii.) (P ×Q)0.4

Answer :
(i)
P ∩Q = (x1, 0.1), (x2, 0.2), (x3, 0.7), (x4, 0.5), (x5, 0.2)
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∴ (P ∩Q)0.4 = {x|µ(x) ≥ 0.4} = {x3, x4}

(ii)

P ×Q =



x1 x2 x3 x4 x5

x1 0.1 0.1 0.1 0.1 0.1
x2 0.2 0.2 0.2 0.2 0.2
x3 0.7 0.6 0.3 0.2 0.7
x4 0.5 0.5 0.3 0.2 0.4
x5 0.4 0.4 0.3 0.2 0.4

, (P ×Q)0.4 =



x1 x2 x3 x4 x5

x1 0 0 0 0 0
x2 0 0 0 0 0
x3 1 1 0 1 1
x4 1 1 0 0 1
x5 1 1 0 0 1


[3+3]
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Q. 3

(a) The membership functions of two fuzzy sets A and B are shown in the following graph.
A: climate is Hot.

B: climate is Cold.

-15 -10 -5 0 5 10 15 20 25 30 35 40

1.0
B A

i. Draw the graph of the membership function, which represents the fuzzy set C: climate is
Extreme.
Answer : Climate is Extreme ≈ Climate is Hot OR Climate is Cold.
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1.0
A B 

ii. What would be the graph of the membership function µD of the fuzzy set D = (A ∩ C)?
State D in terms of fuzzy linguistic.
Answer :

-15 -10 -5 0 5 10 15 20 25 30 35 40

1.0

D

AB

Lingustic interpretation : A∩B = Climate is Pleasant, D = ¯A ∩B = Climate is not Pleasant

[3+3]

(b) Two fuzzy relations ‘likes’ and ‘earns’ are defined below.

likes =


Football Hockey Cricket

Dhoni 0.1 0.3 0.8
V irat 0.2 0.7 0.5
Rohit 0.5 0.4 0.2
Sekhar 0.4 0.5 0.6


For example, x likes Game.

earns =


10L 50L 100L

Dhoni 0.6 0.3 0.2
V irat 0.4 0.7 0.8
Rohit 0.1 0.3 0.2
Sekhar 0.5 0.2 0.6


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For example, x earns Money.
Obtain the relation between a game to a money? [6]
Answer :
This relation can be obtained as likesT ◦ earns. That is,


Dhoni V irat Rohit Sekhan

Footboll 0.1 0.2 0.5 0.4
Hockey 0.3 0.7 0.4 0.5
Cricket 0.8 0.5 0.2 0.6

 ◦


10L 50L 100L

Dhoni 0.6 0.3 0.2
V irat 0.4 0.7 0.8
Rohit 0.1 0.3 0.2
Sekhan 0.5 0.2 0.6

 =


10L 50L 100L

Football 0.4 0.3 0.4
Hockey 0.5 0.7 0.7
Circket 0.6 0.5 0.6


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Q. 4

(a) What are the components you should consider in order to mathematically model an artificial
neuron ?

[4]

Answer : Two components namely summation until and threshold unit are required to mathe-
matically model as artificial neuron. Two components can be defined as follows.

…
.. 

x1

x2

x3

xn

w1

w2

w3

wn

input weight
Summation 

unit
Threshold unit output

I

Ø(I)

y

Summation unit I =
∑n

i=1 xi · wi. Threshold unit © = φ(I), where φ is some transfer function.

(b) If φ(I) = 1
1+e−αI

is a transfer function in a perceptron, then show that

Answer :

φ(I) = 1
1+e−αI

; Let z = 1 + e−αI . ∴ ∂z
∂I = −α · e−αI = −α · 1−φ(I)φ(I)

∂φ(I)
∂I = ∂φ(I)

∂z ·
∂z
∂I

= − 1
z2
· −α · 1−φ(I)φ(I)

= φ(I)2 · α · 1−φ(I)φ(I) , ∵ 1
z = φ(I)

= α(1− φ(I)) · φ(I) [3]

(c) Draw a schematic diagram of a multi-layer feed-forward artificial neural network architecture and
clearly label the different elements in it.

Give one application, where you should apply such an ANN architecture.

Answer :

Application : Such an ANN would be applied to problems whose output are non-separable with
resepct to input. [4+1]
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Q. 5

(a) Show how the computations in input, hidden and output layers of an ANN can be accomplished
in terms of matrix algebra.

[2+2+2]

Answer :

Whole learning method consists of the following three computations:

(a) Input layer computation

(b) Hidden layer computation

(c) Output layer computation

In our computation, we assume that < T0, TI > be the training set of size |T |.

• Let us consider an input training data at any instant be II = [I11 , I
1
2 , · · · , I1i , I1l ] where II ∈ TI

• Consider the outputs of the neurons lying on input layer are the same with the corresponding
inputs to neurons in hidden layer. That is,

OI = II

[l × 1] = [l × 1] [Output of the input layer]

• The input of the j-th neuron in the hidden layer can be calculated as follows.

IHj = v1jo
I
1 + v2jo

I
2+, · · · ,+vijoIj + · · ·+ vijo

I
l
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where j = 1, 2, · · ·m.
[Calculation of input of each node in the hidden layer]

• In the matrix representation form, we can write

IH = V T ·OI
[m× 1] = [m× l] [l × 1]

• Let us consider any j-th neuron in the hidden layer.

• Since the output of the input layer’s neurons are the input to the j-th neuron and the j-th
neurons follows the log-sigmoid transfer function, we have

OHj = 1

1+e
−αH ·IH

j

where j = 1, 2, · · · ,m and αH is the constant co-efficient of the transfer function.

Note that all output of the nodes in the hidden layer can be expressed as a one-dimensional column
matrix.

OH =



· · ·
· · ·
...
1

1+e
−αH ·IH

j

...
· · ·
· · ·


m×1

Let us calculate the input to any k-th node in the output layer. Since, output of all nodes in the
hidden layer go to the k-th layer with weights w1k, w2k, · · · , wmk, we have

IOk = w1k · oH1 + w2k · oH2 + · · ·+ wmk · oHm

where k = 1, 2, · · · , n

In the matrix representation, we have

IO = W T ·OH
[n× 1] = [n×m] [m× 1]

Now, we estimate the output of the k-th neuron in the output layer. We consider the tan-sigmoid
transfer function.

Ok = eαo·I
o
k−e−αo·I

o
k

e
αo·Iok+e

−αo·Iok

for k = 1, 2, · · · , n

Hence, the output of output layer’s neurons can be represented as

O =



· · ·
· · ·
...

eαo·I
o
k−e−αo·I

o
k

e
αo·Iok+e

−αo·Iok
...
· · ·
· · ·


n×1
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(b) Explain the basic principle of calculating error in supervised learning.

[2]

Answer :

• Let us consider any k-th neuron at the output layer. For an input pattern Ii ∈ TI (input in
training) the target output TOk of the k-th neuron be TOk.

• Then, the error ek of the k-th neuron is defined corresponding to the input Ii as

ek = 1
2 (TOk −OOk)2

where OOk denotes the observed output of the k-th neuron.

• For a training session with Ii ∈ TI , the error in prediction considering all output neurons can
be given as

e =
∑n

k=1 ek = 1
2

∑n
k=1 (TOk −OOk)

where n denotes the number of neurons at the output layer.

• The total error in prediction for all output neurons can be determined considering all training
session < TI , TO > as

E =
∑
∀Ii∈TI e = 1

2

∑
∀t∈<TI ,TO>

∑n
k=1 (TOk −OOk)2

(c) Derive the ‘delta rule’ according to the method of Steepest descent.

• For simplicity, let us consider the connecting weights are the only design parameter.

• Suppose, V and W are the wights parameters to hidden and output layers, respectively.

• Thus, given a training set of size N , the error surface, E can be represented as

E =
∑N

i=1 e
i (V,W, Ii)

where Ii is the i-th input pattern in the training set and ei(...) denotes the error computation
of the i-th input.

• Now, we will discuss the steepest descent method of computing error, given a changes in V
and W matrices.

• Suppose, A and B are two points on the error surface (see figure in Slide 30). The vector ~AB
can be written as

~AB = (Vi+1 − Vi) · x̄+ (Wi+1 −Wi) · ȳ = ∆V · x̄+ ∆W · ȳ

The gradient of ~AB can be obtained as

e ~AB = ∂E
∂V · x̄+ ∂E

∂W · ȳ

Hence, the unit vector in the direction of gradient is

ē ~AB = 1
|e ~AB |

[
∂E
∂V · x̄+ ∂E

∂W · ȳ
]

• With this, we can alternatively represent the distance vector AB as

~AB = η
[
∂E
∂V · x̄+ ∂E

∂W · ȳ
]
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where η = k
|e ~AB |

and k is a constant

• So, comparing both, we have

∆V = η ∂E∂V
∆W = η ∂E∂W

This is also called as delta rule and η is called learning rate.

[2+2]
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