School of Information Technology
 Indian Institute of Technology Kharagpur
 IT60108: Soft Computing and Application

Class Test - I
F.M. 20

Session 2014 - 2015
Time: 20 mins
Q. 1
(a) $\mu_{A}(\mathrm{x})$ and $\mu_{B}(\mathrm{x})$ are the membership functions of the fuzzy sets A and B, respectively.
$\mu_{A}(x)=e^{\frac{1}{1+x}}$
$\mu_{B}(x)=\frac{1}{1+\left(\frac{x-50}{10}\right)^{4}}$
Decide whether A and B are closed or open.
Answer : A membership function $\mu(x)$ is said to be closed iff $\lim _{x \rightarrow-\infty} \mu(x)=0=\lim _{x \rightarrow \alpha} \mu(x)$
Case 1 : $\mu_{A}(x)=e^{\frac{1}{1+n}}:$ Here $\lim _{x \rightarrow-\infty} \mu_{A}(x)=\lim _{x \rightarrow+\infty} \mu_{A}(x)=1$
Hence, it is neither closed nor open.
Case 2: $\mu_{B}(x)=\frac{1}{1+\left(\frac{x-50}{10}\right)^{4}}:$ Here $\lim _{x \rightarrow-\infty} \mu_{B}(x)=\lim _{x \rightarrow+\infty} \mu_{A}(x)=0$
Hence, it is closed.
(b) Given two fuzzy sets A and B defined over universe of discourses X and Y, respectively.
$A=\{(20,0.2),(25,0.4),(30,0.6),(35,0.6),(40,0.7),(45,0.8)$,
$(50,0.8)\}$
$B=\{(1,0.8),(2,0.8),(3,0.6),(4,0.4)\}$
$X=\{10,15,20,25,30,35,40,45,50,55\}$
$Y=\{0,1,2,3,4,5\}$
Draw the graphs for the following.
i. $A \times B$
ii. $A \Longrightarrow B$
(i) $A \times B$

$$
\mu_{A \times B}(x, y)=\min \left\{\mu_{A}(x), \mu_{B}(y)\right\}=\begin{gathered}
\\
20 \\
25 \\
30 \\
35 \\
40 \\
45 \\
50
\end{gathered}\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0.2 & 0.2 & 0.2 & 0.2 \\
0.4 & 0.4 & 0.4 & 0.4 \\
0.6 & 0.6 & 0.6 & 0.4 \\
0.6 & 0.6 & 0.6 & 0.4 \\
0.7 & 0.7 & 0.6 & 0.4 \\
0.8 & 0.8 & 0.6 & 0.4 \\
0.8 & 0.8 & 0.6 & 0.4
\end{array}\right]
$$

(ii) $A \Rightarrow B$

For this many interpretation are possible.
$A \Rightarrow B \equiv \bar{A} \cup B$ or $A \times B$ or $(A \times B) \cup(\bar{A} \times Y)$
Accordingly answer will be different.

Q. 2

(a) Suppose, a fuzzy relation is 'If x is A then y is B '. How to find the following:
i. x is C, given that y is D
ii. y is D, given that x is C

Answer :
GPM
if x is A then y is B
x is A^{\prime}

- - - - - - - - - - - - - -

y is B^{\prime}
GMT is
if x is A then y is B
y is B^{\prime}
$---------------$
x is A^{\prime}
Since C and D are not mentioned as A^{\prime} or B^{\prime} and (vice-versa) none of the GMP and GMT are applicable in this case and hence we can not deduce anything.
(b) Two fuzzy sets P and Q are defined on $x \in \mathrm{X}$ as follows.

	x_{1}		x_{2}	x_{3}	x_{4}
x_{5}					
P	0.1	0.2	0.7	0.5	0.4
Q	0.9	0.6	0.3	0.2	0.8

Find (i.) $(P \cap \bar{Q})_{0.4}$ (ii.) $(P \times Q)_{0.4}$

Answer :

(i)
$P \cap \bar{Q}=\left(x_{1}, 0.1\right),\left(x_{2}, 0.2\right),\left(x_{3}, 0.7\right),\left(x_{4}, 0.5\right),\left(x_{5}, 0.2\right)$

$$
\therefore(P \cap \bar{Q})_{0.4}=\{x \mid \mu(x) \geq 0.4\}=\left\{x_{3}, x_{4}\right\}
$$

(ii)

$$
P \times Q=\begin{gathered}
\\
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{gathered}\left[\begin{array}{ccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
0.1 & 0.1 & 0.1 & 0.1 & 0.1 \\
0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\
0.7 & 0.6 & 0.3 & 0.2 & 0.7 \\
0.5 & 0.5 & 0.3 & 0.2 & 0.4 \\
0.4 & 0.4 & 0.3 & 0.2 & 0.4
\end{array}\right],(P \times Q)_{0.4}=\begin{array}{ccccc}
x_{1} \\
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\left[\begin{array}{cccc}
x_{1} & x_{2} & x_{3} & x_{4} \\
0 & x_{5} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 \\
1 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1
\end{array}\right]
$$

Q. 3
(a) The membership functions of two fuzzy sets A and B are shown in the following graph.

A: climate is Hot.
B: climate is Cold.

i. Draw the graph of the membership function, which represents the fuzzy set C : climate is Extreme.
Answer : Climate is Extreme \approx Climate is Hot OR Climate is Cold.

ii. What would be the graph of the membership function μ_{D} of the fuzzy set $D=\overline{(A \cap C)}$? State D in terms of fuzzy linguistic.
Answer :

Lingustic interpretation : $A \cap B=$ Climate is Pleasant, $D=A \bar{\cap} B=$ Climate is not Pleasant

$$
[3+3]
$$

(b) Two fuzzy relations 'likes' and 'earns' are defined below.

$$
\text { likes }=\begin{gathered}
\\
\text { Dhoni } \\
\text { Virat } \\
\text { Roohtball }
\end{gathered}\left[\begin{array}{ccc}
0.1 & \text { Hockey } & \text { Cricket } \\
\text { Sekhar }
\end{array}\left[\begin{array}{ccc}
0.3 & 0.8 \\
0.2 & 0.7 & 0.5 \\
0.5 & 0.4 & 0.2 \\
0.4 & 0.5 & 0.6
\end{array}\right]\right.
$$

For example, x likes Game.

$$
\text { earns }=\begin{gathered}
\\
\text { Dhoni } \\
\text { Virat } \\
\text { Rohit } \\
\text { Sekhar }
\end{gathered}\left[\begin{array}{ccc}
10 L & 50 L & 100 L \\
0.6 & 0.3 & 0.2 \\
0.4 & 0.7 & 0.8 \\
0.1 & 0.3 & 0.2 \\
0.5 & 0.2 & 0.6
\end{array}\right]
$$

For example, x earns Money.
Obtain the relation between a game to a money?
[6]
Answer :
This relation can be obtained as likes ${ }^{T} \circ$ earns. That is,

Q. 4
(a) What are the components you should consider in order to mathematically model an artificial neuron?

Answer : Two components namely summation until and threshold unit are required to mathematically model as artificial neuron. Two components can be defined as follows.

Summation unit $I=\sum_{i=1}^{n} x_{i} \cdot w_{i}$. Threshold unit $\bigcirc=\phi(I)$, where ϕ is some transfer function.
(b) If $\phi(I)=\frac{1}{1+e^{-\alpha I}}$ is a transfer function in a perceptron, then show that

Answer :
$\phi(I)=\frac{1}{1+e^{-\alpha I}} ;$ Let $z=1+e^{-\alpha I} . \therefore \frac{\partial z}{\partial I}=-\alpha \cdot e^{-\alpha I}=-\alpha \cdot \frac{1-\phi(I)}{\phi(I)}$
$\frac{\partial \phi(I)}{\partial I}=\frac{\partial \phi(I)}{\partial z} \cdot \frac{\partial z}{\partial I}$
$=-\frac{1}{z^{2}} \cdot-\alpha \cdot \frac{1-\phi(I)}{\phi(I)}$
$=\phi(I)^{2} \cdot \alpha \cdot \frac{1-\phi(I)}{\phi(I)}, \because \frac{1}{z}=\phi(I)$
$=\alpha(1-\phi(I)) \cdot \phi(I)$
(c) Draw a schematic diagram of a multi-layer feed-forward artificial neural network architecture and clearly label the different elements in it.
Give one application, where you should apply such an ANN architecture.
Answer :
Application : Such an ANN would be applied to problems whose output are non-separable with resepct to input.

Q. 5
(a) Show how the computations in input, hidden and output layers of an ANN can be accomplished in terms of matrix algebra.

Answer :
Whole learning method consists of the following three computations:

(a) Input layer computation

(b) Hidden layer computation
(c) Output layer computation

In our computation, we assume that $<T_{0}, T_{I}>$ be the training set of size $|T|$.

- Let us consider an input training data at any instant be $I^{I}=\left[I_{1}^{1}, I_{2}^{1}, \cdots, I_{i}^{1}, I_{l}^{1}\right]$ where $I^{I} \in T_{I}$
- Consider the outputs of the neurons lying on input layer are the same with the corresponding inputs to neurons in hidden layer. That is,

$$
\begin{aligned}
O^{I} & =I^{I} \\
{[l \times 1] } & =[l \times 1] \quad[\text { Output of the input layer }]
\end{aligned}
$$

- The input of the j-th neuron in the hidden layer can be calculated as follows.

$$
I_{j}^{H}=v_{1 j} o_{1}^{I}+v_{2 j} o_{2}^{I}+, \cdots,+v_{i j} o_{j}^{I}+\cdots+v_{i j} o_{l}^{I}
$$

where $j=1,2, \cdots m$.
[Calculation of input of each node in the hidden layer]

- In the matrix representation form, we can write

$$
\begin{gathered}
I^{H}=V^{T} \cdot O^{I} \\
{[m \times 1]=[m \times l][l \times 1]}
\end{gathered}
$$

- Let us consider any j-th neuron in the hidden layer.
- Since the output of the input layer's neurons are the input to the j-th neuron and the j-th neurons follows the log-sigmoid transfer function, we have

$$
O_{j}^{H}=\frac{1}{1+e^{-\alpha_{H} \cdot I_{j}^{H}}}
$$

where $j=1,2, \cdots, m$ and α_{H} is the constant co-efficient of the transfer function.
Note that all output of the nodes in the hidden layer can be expressed as a one-dimensional column matrix.

$$
O^{H}=\left[\begin{array}{c}
\cdots \\
\cdots \\
\vdots \\
\frac{1+e^{-\alpha_{H} \cdot I_{j}^{H}}}{\vdots} \\
\cdots \\
\cdots
\end{array}\right]_{m \times 1}
$$

Let us calculate the input to any k-th node in the output layer. Since, output of all nodes in the hidden layer go to the k -th layer with weights $w_{1 k}, w_{2 k}, \cdots, w_{m k}$, we have

$$
I_{k}^{O}=w_{1 k} \cdot o_{1}^{H}+w_{2 k} \cdot o_{2}^{H}+\cdots+w_{m k} \cdot o_{m}^{H}
$$

where $k=1,2, \cdots, n$
In the matrix representation, we have

$$
\begin{gathered}
I^{O}=W^{T} \cdot O^{H} \\
{[n \times 1]=[n \times m][m \times 1]}
\end{gathered}
$$

Now, we estimate the output of the k -th neuron in the output layer. We consider the tan-sigmoid transfer function.

$$
O_{k}=\frac{e^{\alpha_{o} \cdot I} I_{k}^{o}-e^{-\alpha_{o} \cdot} \cdot I_{k}^{o}}{e^{\alpha_{o} \cdot I_{k}^{o}}+e^{-\alpha_{o} \cdot I_{k}^{o}}}
$$

for $k=1,2, \cdots, n$
Hence, the output of output layer's neurons can be represented as

$$
O=\left[\begin{array}{c}
\cdots \\
\cdots \\
\vdots \\
\frac{e^{\alpha_{o} \cdot I} I_{k}^{o-e^{-\alpha_{\cdot}} \cdot I_{k}^{O}}}{e^{\alpha_{O} \cdot I_{k}^{o}}+e^{-\alpha_{o} \cdot I_{k}^{0}}} \\
\vdots \\
\cdots \\
\cdots
\end{array}\right]_{n \times 1}
$$

(b) Explain the basic principle of calculating error in supervised learning.

Answer :

- Let us consider any k-th neuron at the output layer. For an input pattern $I_{i} \in T_{I}$ (input in training) the target output $T_{O k}$ of the k-th neuron be $T_{O k}$.
- Then, the error e_{k} of the k -th neuron is defined corresponding to the input I_{i} as

$$
e_{k}=\frac{1}{2}\left(T_{O k}-O_{O k}\right)^{2}
$$

where $O_{O k}$ denotes the observed output of the k-th neuron.

- For a training session with $I_{i} \in T_{I}$, the error in prediction considering all output neurons can be given as

$$
e=\sum_{k=1}^{n} e_{k}=\frac{1}{2} \sum_{k=1}^{n}\left(T_{O k}-O_{O k}\right)
$$

where n denotes the number of neurons at the output layer.

- The total error in prediction for all output neurons can be determined considering all training session $\left\langle T_{I}, T_{O}\right\rangle$ as

$$
E=\sum_{\forall I_{i} \in T_{I}} e=\frac{1}{2} \sum_{\forall t \in<T_{I}, T_{O}>} \sum_{k=1}^{n}\left(T_{O k}-O_{O k}\right)^{2}
$$

(c) Derive the 'delta rule' according to the method of Steepest descent.

- For simplicity, let us consider the connecting weights are the only design parameter.
- Suppose, V and W are the wights parameters to hidden and output layers, respectively.
- Thus, given a training set of size N, the error surface, E can be represented as

$$
E=\sum_{i=1}^{N} e^{i}\left(V, W, I_{i}\right)
$$

where I_{i} is the i-th input pattern in the training set and $e^{i}(\ldots)$ denotes the error computation of the i-th input.

- Now, we will discuss the steepest descent method of computing error, given a changes in V and W matrices.
- Suppose, A and B are two points on the error surface (see figure in Slide 30). The vector $\overrightarrow{A B}$ can be written as

$$
\overrightarrow{A B}=\left(V_{i+1}-V_{i}\right) \cdot \bar{x}+\left(W_{i+1}-W_{i}\right) \cdot \bar{y}=\Delta V \cdot \bar{x}+\Delta W \cdot \bar{y}
$$

The gradient of $\overrightarrow{A B}$ can be obtained as

$$
e_{\overrightarrow{A B}}=\frac{\partial E}{\partial V} \cdot \bar{x}+\frac{\partial E}{\partial W} \cdot \bar{y}
$$

Hence, the unit vector in the direction of gradient is

$$
\bar{e}_{\overrightarrow{A B}}=\frac{1}{\left|e_{\overrightarrow{A B}}\right|}\left[\frac{\partial E}{\partial V} \cdot \bar{x}+\frac{\partial E}{\partial W} \cdot \bar{y}\right]
$$

- With this, we can alternatively represent the distance vector $A B$ as

$$
\overrightarrow{A B}=\eta\left[\frac{\partial E}{\partial V} \cdot \bar{x}+\frac{\partial E}{\partial W} \cdot \bar{y}\right]
$$

where $\eta=\frac{k}{\left|e_{\overrightarrow{A B}}\right|}$ and k is a constant

- So, comparing both, we have

$$
\begin{aligned}
\Delta V & =\eta \frac{\partial E}{\partial V} \\
\Delta W & =\eta \frac{\partial E}{\partial W}
\end{aligned}
$$

This is also called as delta rule and η is called learning rate.

